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Abstract

Background: The evidence-based medicine paradigm requires the ability to aggregate and compare outcomes of
interventions across different trials. This can be facilitated and partially automatized by information extraction systems.
In order to support the development of systems that can extract information from published clinical trials at a
fine-grained and comprehensive level to populate a knowledge base, we present a richly annotated corpus at two
levels. At the first level, entities that describe components of the PICO elements (e.g., population’s age and
pre-conditions, dosage of a treatment, etc.) are annotated. The second level comprises schema-level (i.e., slot-filling
templates) annotations corresponding to complex PICO elements and other concepts related to a clinical trial (e.g.
the relation between an intervention and an arm, the relation between an outcome and an intervention, etc.).

Results: The final corpus includes 211 annotated clinical trial abstracts with substantial agreement between
annotators at the entity and scheme level. The mean Kappa value for the glaucoma and T2DM corpora was 0.74 and
0.68, respectively, for single entities. The micro-averaged F1 score to measure inter-annotator agreement for complex
entities (i.e. slot-filling templates) was 0.81.
The BERT-base baseline method for entity recognition achieved average micro-F1 scores of 0.76 for glaucoma and
0.77 for diabetes with exact matching.

Conclusions: In this work, we have created a corpus that goes beyond the existing clinical trial corpora, since it is
annotated in a schematic way that represents the classes and properties defined in an ontology. Although the corpus
is small, it has fine-grained annotations and could be used to fine-tune pre-trained machine learning models and
transformers to the specific task of extracting information about clinical trial abstracts.
For future work, we will use the corpus for training information extraction systems that extract single entities, and
predict template slot-fillers (i.e., class data/object properties) to populate a knowledge base that relies on the C-TrO
ontology for the description of clinical trials. The resulting corpus and the code to measure inter-annotation
agreement and the baseline method are publicly available at https://zenodo.org/record/6365890.
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Background
So far, there are few corpora in which clinical studies are
manually annotated for the purpose of training informa-
tion extraction models. Most of the available datasets pro-
vide coarse-grained annotations of the PICO elements1
only. The annotations are coarse-grained in that they
typically provide text elements (at the phrase or sentence-
level) to describe each PICO element. Therefore, these
annotation schemes do not provide sufficient detail about
the study design or how different arms, treatments (e.g.
doses, duration, time of application, etc.), or other ele-
ments (e.g. quantitative results, size of effect, etc.) are
interconnected. Thus, these annotation schemes are not
rich enough to support the development of systems able
to extract information from published clinical trials at a
level of detail that is sufficient to support the comparison
and aggregation of outcomes across multiple clinical trial
publications.
To address this gap, in this work we describe the devel-

opment of a corpus of clinical trials whose annotation
scheme follows a structure derived from the C-TrO ontol-
ogy [1], which has been designed to support the aggre-
gation of clinical trials. In annotating the corpus, we
distinguish between annotations at the level of entities and
annotations at the level of complex classes or schemas.
Annotations at the entity level comprise the markup of
one single non-decomposable entity mentioned in the
text. Examples of classes of such entities include pub-
lication year, clinical design (e.g., double-blind, multi-
center), drug names, p-values, and more. Annotations
at the level of complex classes comprise of a slot-filler
scheme that represents more complex clinical concepts
that can be decomposed into various typed slots (fields)
that can be filled with the appropriate information. Exam-
ples of such complex clinical concepts are: interventional
arms and the associated populations and interventions,
medication protocols, defined endpoints and the related
outcomes.
Besides annotating the slots of the complex clinical

concepts that appear in a given publication, our corpus
includes relations between the instances of the different
complex concepts, e.g., relations between a specific treat-
ment, the corresponding arm where the treatment was
applied and the outcome for this pair of treatment/arm.
Aiming to provide a corpus that is annotated at the

schema level as well as featuring relations between
instances of the complex concepts, we implemented our
annotation schema in an annotation tool designed for
such schema-level annotation tasks on the basis of a given
ontology. The entity annotations are exported and made

1PICO stands for Patients/Population, Intervention, Control/Comparison and
Outcome

available in a standard one-token-per-line format follow-
ing the CoNLL format [2, 3], and the schema-level rela-
tional annotations are exported as RDF [4] triples (subject,
predicate, object) following the C-TrO ontology.
The corpus is intended to support the development of

information extraction (IE) systems that extract informa-
tion from clinical trial publications at a level of com-
prehensiveness and detail that is needed to aggregate
information across trials and that is not possible given
the current state of the art in biomedical IE. Information
extraction systems developed on the basis of our cor-
pus can be evaluated at two levels: First, at the level of
recognition of relevant entities and, second at the level of
extracting a set of instantiated schemas that have relations
to each other.
Existing corpora of clinical trials annotated to support

clinical research typically include only PICO elements
annotated in a coarse-grained fashion either at a sen-
tence or phrase-level with the view that finer annotated
entities or more detailed relevant information (e.g., age,
sex, ethnicity) can be subsequently identified within these
entities by automatic methods such as machine learning
or rule-based models [5–7]. The identified data can then
be used in specific tasks, ranging from answering clinical
questions to the retrieval of relevant clinical documents.
One of the main uses of the sentence-level annotations

of PICO elements has been to support the search for pre-
cise answers in an information retrieval setting from large
medical citation databases such as PubMed [6]. Therefore,
a search engine able to detect and index PICO elements in
the text collection can help to retrieve relevant documents
[8, 9]. While the coarse-grained sentence-level annota-
tions are sufficient to support search for documents, they
certainly do not suffice to support the aggregation of evi-
dence, which requires annotations at a fine-grained level
going beyond the current practices in annotation of PICO
elements including their relationships to other PICO ele-
ments. In this respect, there is a small number of corpora
that explicitly annotate relations between PICO elements,
see [10–13]. The corpus created by Summerscales et al.
[10] contains 263 RCT abstracts from the British Medi-
cal Journal (BMJ). The PICO elements are annotated in
a coarse-grained manner by way of XML tags in which
the intervention groups and their outcomes are related
through IDs included as attributes in the related XML ele-
ments. The type of outcome, i.e. good or bad (adverse
effects), is captured via XML attributes. Finer-grained ele-
ments (e.g. the descriptions of the intervention groups
and the quantities associated with the outcomes) were
automatically extracted from the coarse-grained anno-
tated elements and then used to calculate summary statis-
tics, such as the absolute risk reduction. Trenta et al.
[11] describe a corpus of 99 hand-annotated clinical trial
abstracts on glaucoma in which patient groups, arms,
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primary outcome descriptions, and results are tagged.
In contrast to our ontology-based slot-annotations that
consider complex relationships among atomic and com-
posed entities and all types of endpoints and adverse
effects, this corpus contains only simple relationships
between the arms and their interventions through their
tag names, which are formed by the abbreviation of the
entity name and a number (e.g. <a1>:arm1 is related to
<r1>:result1). The main use of this corpus is the train-
ing of information extraction systems that can extract
evidence tables from text. Zlabinger et al. [12] created a
corpus in which the PICO elements are annotated at both
the phrase- and sentence-level by expert and non-expert
annotators. Besides, a sub-set of the corpus includes the
annotations of the sentiments of the results of the com-
pared interventions. If an intervention is better than its
comparator (e.g., more effective, less adverse effects), the
sentiment is positive, otherwise negative. The corpus con-
sists of 1,750 annotated RCT abstracts, of which 1,400
abstracts include sentiment labels. However, this corpus
does not contain annotations of the relationships between
PICO entities. Nye et al. [13] present the EBM-NLP cor-
pus that was annotated through crowd-sourcing. The cor-
pus is composed of around 5,000 RCT abstracts with the
aim to facilitate the development of an information extrac-
tion model that supports the extraction of key evidence
from RCT abstracts. The annotations include text spans
that describe the PICO elements (e.g., age, type of inter-
vention, sample size) at finer detail. The annotated entities
are also mapped onto the medical vocabulary MeSH.
However, the relationships between PICO elements are
not annotated.
There are useful annotations provided by the described

corpora for the aggregation of clinical trial evidence. For
example, the sentiment annotations can be used when
comparing treatment superiority in terms of efficacy and
safety when aggregating several clinical trials results,
while the mapping of entities onto a medical vocabulary is
also useful for the normalization of terms. However, most
corpora have been annotated at a coarse-grained level and
to not contain crucial information about the clinical trials
such as the risk of bias, the overall design of the clinical
trial, or meta-data such as the country in which the study
was conducted. Only the EBM-NLP corpus contains some
of these finer-grained PICO elements. In contrast, the cor-
pora of Summerscales et al. [10] and Trenta et al. [11]
provide limited relationships between the PICO elements.
The population of knowledge bases with information

extracted from scientific publications has received sub-
stantial interest. Different information extraction systems
have been applied for this purpose, among them, named
entity recognition, disambiguation or normalization (i.e.
mapping of relevant entities to specialized vocabular-

ies), and relation extraction to identify semantic relations
between entities.
The main use of our corpus is to support the train-

ing of information extraction systems that can extract
relevant information from published clinical trials to pop-
ulate a knowledge base following the C-TrO ontology for
the description and aggregation of clinical trial results.
Current corpora do not consider the complex relation-
ships necessary to populate a knowledge base and do
not provide the basis for automatic extraction and com-
parison/aggregation of results across clinical trials. The
extraction of information from clinical trials at a sufficient
level of detail is however key to progress on the automatic
generation of systematic reviews that is a central concern
for the medical community [14].

Methods
Selection of texts for the corpus
In order to form the corpus, we searched for abstracts
on glaucoma and type 2 diabetes mellitus (T2DM). We
selected only two diseases to facilitate the task of anno-
tators, who were not medical experts, to become familiar
with the clinical concepts (e.g., endpoints and outcomes)
used particularly for these two diseases.
The selected abstracts were required to follow the Con-

solidated Standards of Reporting Trials (CONSORT) [15],
which recommend that authors include in the abstracts
the compressed structure of the corresponding full article,
including background, objective, methodology, results,
and conclusions. These sections should comprise of the
corresponding relevant elements (e.g. population and pre-
conditions in methodology).
Then, we searched for relevant publications written

in English using PubMed’s search tool PICO linguistics
[16] and other search engines like Kopernio and Google
search. The search filters used in PICO linguistics were
the diseases and the drugs commonly used to treat the
diseases in question, and publication types, such as clin-
ical trials, systematic reviews, and meta-analysis articles.
We took the abstracts from the retrieved clinical trials and
the abstracts of the studies cited in the systematic reviews
and meta-analysis to form our corpus. We excluded those
abstracts with insufficient or unclear information on the
study methodology and results, and those that did not
follow the CONSORT recommendations.
Thus, the final corpus comprises of 211 abstracts, of

which 107 are on glaucoma and 104 on type 2 dia-
betes mellitus (T2DM). All abstracts come from PubMed
clinical trials that are randomized, are in phase 3 or 4,
and compare at least two drug intervention arms. The
abstracts were automatically downloaded from PubMed
in text format and then tokenized and uploaded to the
annotation tool.
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Fig. 1 Annotation scheme based on C-TrO. The annotation schema follows the C-TrO structure with some variants to facilitate the annotation process

Annotation schema
The annotation schema was derived from our clinical
trial ontology C-TrO [1] that was designed to model
fine-grained information of clinical trials. C-TrO cov-
ers the PICO elements which are the main components
of a clinical trial. Furthermore, it contains other impor-
tant elements for the aggregation and meta-analysis of
clinical studies such as the numeric value of the change
from baseline caused by the interventions, the statistical
information about such changes, the baseline values, etc.
In addition, this schema facilitates the required complex
annotation task and considers the different ways in which
the authors of clinical trial articles may report their meth-
ods and results. For example, authors can report their
results either in terms of the amount of change from base-
line, the measurement obtained at the last time point, or
as a textual description. The schema based on C-TrO used
for the annotation process is depicted in Fig. 1.
Then, the annotation task consists of annotating the

classes and data/object properties contained in the C-
TrO schema. In ontological terms, data properties relate
individuals (i.e., instances of a given class) to literal data
(e.g., strings, numbers, etc.), while object properties relate
individuals to other individuals.

Single entities are atomic entities that can be individu-
als (i.e., instances of a class) or literal values, as defined by
the underlying ontology. Figure 2 shows individual entities
annotated according to our schema, in the comparison
between the bimatoprost and travosprost interventions.
For example, Mean is an individual of the Aggregation-

Method class2. In this example,Mean refers to the average
value of the resulting IOP measurements in each arm3.
The Reduction label indicates that the annotated number
is the amount of IOP reduced from the baseline (i.e., the
direction of the IOP change). The Reduction label allows
to consider different ways in which the authors of the clin-
ical trials may report such a reduction, as for example, a
description (e.g. “the IOP reduction was 8.77 units”) or
only the sign “-”. DoseValue is the annotation of the lit-
eral value 0.03 that denotes the dose of the administrated
drug.

Complex entities are composite entities consisting
of several information items or slots. Following the
example in Figs. 2, 3 depicts the schematic annota-
tions referring to the bimatoprost intervention. The
complex entities are the instances of the classes
Arm, Intervention, Medication, Endpoint and Outcome.
Intervention-bimatoprost is an instance of the
Intervention class, which is composed of the sin-
gle entity Frequency that is a literal value (“once
daily”) and the relationship to the complex entity
Medication-bimatoprost through the respective
data property hasFrequency and object property hasMed-
ication.
In RDF, the basic data modelling unit is a triple of the

form
〈
s, p, o

〉
where s stands for subject p for predicate and

2AggregationMethod refers to the method by which the results of the
intervention are aggregated.
3Arm refers to each group of participants in a clinical trial that receives an
interventions (or a placebo).
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Fig. 2 Example of the annotation of single entities according to the C-TrO schema. (Excerpt taken from abstract PMID 21034177 and annotated with
INCEpTION [24] for illustrative purposes)

o for object. In case of complex entities, the subject would
represent an ID for the complex entity and the slots would
be modelled as objects for different predicates. Multiple
values for a subject/predicate are allowed in principle,
unless the property is functional.
The following is an example of some of the triples that

describe the entities and their relationships depicted in
Fig. 3.

1
〈
data:Arm_bimatoprost rdf:type, ctro:Arm

〉

2
〈
data:Arm_bimatoprost, ctro:hasIntervention,

data:Intervention_bimatoprost
〉

3
〈
data:Arm_bimatoprost, ctro:hasOutcome,

data:Outcome_bimatoprost
〉

4
〈
data:Intervention_bimatoprost, ctro:hasFrequency,

“once daily”
〉

5
〈
data:Intervention_bimatoprost,

ctro:hasMedication, data:Medication_bimatoprost
〉

6
〈
data:Medication_bimatoprost, ctro:hasDrug,

data:Bimatoprost
〉

7
〈
data:Medication_bimatoprost, ctro:hasDoseValue,

“0.03”
〉

8
〈
data:Medication_bimatoprost, ctro:hasDoseUnit,

data:Percentage
〉

Line 1 defines Arm_bimatoprost as an instance of class
Arm. Lines 2 and 3 state that Arm_bimatoprost is related
to instances of the type Intervention andOutcome, respec-
tively. Line 4 and 5 describe that Intervention_bimatoprost
is composed of frequency “once daily” which is a literal
value, and the relation to an instance of type Medication.
Lines 6 to 8 declare that Medication_bimatoprost is com-
posed of the drug Bimatoprost which is an individual of
type Drug, the dose unit Percentage which is an individ-
ual of type ConcentrationUnit, and the dose value that
corresponds to the literal “0.03”.

Fig. 3 Schematic representation of the annotations of an interventional arm. The bimatoprost interventional-arm and its outcome, as reported in
the excerpt of abstract PMID 21034177
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Fig. 4 Classes and properties of the instances of the classes Intervention and Medication. (Intervention_1 and Medication_1, respectively)

Thus, the corpus is annotated both at the single-entity
level as week as at the schematic level that includes com-
plex entities and their relationships. The resulting anno-
tations are provided in CoNLL format (atomic entities) as
well as in RDF format (atomic and complex entities).

From classes and properties to template and slot-fillers
Text annotation according to the schema of a given ontol-
ogy is challenging, as this type of annotation can be
complex for annotators and curators since it involves the
abstract conceptualization of text fragments that can cor-
respond to class instances or data/objects properties of
the ontology. To make the annotation process easier for
annotators, we approached it as a template slot-filling
task, where the templates represent composite classes and
the slots represent their properties. The slots can only be
filled with the appropriate type of entities according to the
underlying ontology. Thus, the slot-fillers can be seen as
the object (or range) of the properties (or relations) and
the template as the subject (or domain).
Figure 4 shows a more detailed schema of some of the

properties of Intervention_1 andMedication_1, which are

instances of the complex classes Intervention and Med-
ication, respectively. We can see that Intervention_1 has
the data property hasFrequency and the object property
hasMedication. The range of hasFrequency is “once daily”,
which is a piece of text annotated as “Frequency” and is of
literal type. The range of hasMedication is Medication_1
which is itself an instance of a composed class. Medica-
tion_1 has a data property that indicates a dose value,
and two object properties hasDrug and hasDoseUnit. The
entity Bimatoprost, which is an instance of the Drug class,
is the range of hasDrug.
Figure 5 shows the corresponding templates for the

Intervention_1 and Medication_1 instances depicted in
Fig. 4. For example, in the Intervention_1 template, the
slot-filler for the hasFrequency slot is a literal value (e.g.
“once daily”); the filler for the hasMedication slot is an
instance of Medication type (e.g. Medication_1). In the
Medication_1 template, the filler of the hasDrug slot is
“Bimatoprost”, which is of Drug type.
The usage of templates facilitates the annotation task

as the annotators only have to select a template type and
fill in the slots by dragging and dropping the entities in

Fig. 5 Templates and slot-fillers corresponding to the instances Intervention_1 and Medication_1. The texts in quotes are annotated text spans
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question from the text without having to worry about the
properties, classes, and subclasses. This is guided by the
annotation tool on the basis of the underlying ontology
schema.
Table 1 describes the annotation of single and complex

entities in the context of text annotation, the ontology
schema, and the template-filling approach.

The annotation tool SANTO
We used the ontology-driven slot-filling annotation tool
SANTO [17], which is an intuitive tool that allows com-
plex slot-filling and includes the relationships between
different annotations following the conceptualization of a

Table 1 Description and examples of entities in text, ontology
and template slot-filling

Context Description Examples

Single (or atomic) entities

Annotation
in text

Spans of text that refer to
atomic entities

The text span
“bimatropost” is
annotated as
Bimatropost. The text
span “0.03” is annotated
as DoseValue.

Ontology
schema

Range of a dataProperty
that is a literal value or -
Range of an
objectProperty that is an
individual (atomic
instance) of a given class

“0.03” is a literal
representing a dose value
and the range in the
triple <Medication,
hasDoseValue,
DoseValue>. Bimatropost
is an individual of class
Drug and the range in
the triple <Medication,
hasDrug, Drug>

Template
slot-filling

Slot-filler of the type
specified by the
corresponding ontology
properties

Bimatropost
(“bimatropost”) is the
hasDrug slot-filler of a
Medication template.

Complex (or composed) entities

Annotation
in text

NA (A complex entity is a
composed entity and
therefore it does not exist
in the text. In the text
there may be the entities
that are elements of a
complex entity.)

NA

Ontology
schema

A complex class in the
C-TrO ontology, and
which is the domain of the
corresponding
dataProperties and
objectProperties.

The Medication class,
which is the domain in
the triple <Medication,
hasDrug, Drug >

Template
slot-filling

Template of the type of
the corresponding
ontology class. The
template’s slots
correspond to the
dataProperties and
objectProperties of the
class.

The Medication template,
which has the hasDrug
slot whose slot-filler must
be an entity of Drug type.

given ontology. SANTO is suitable for our annotation task
since the slot-filling templates correspond to complex (or
composed) entities, and a template has a set of property-
slots (i.e., relationships) that can be filled with a) single
entities which are annotated in the text or b) references to
other complex entities (templates).
SANTO was configured according to the annotation

schema based on C-TrO that was previously described. To
annotate a single entity, the annotators first mark a span of
text and then select the suitable label from a catalogue that
is populated by the classes and individuals defined in the
underlying schema. In order to annotate a complex entity,
the annotators create a template and fill its slots with the
appropriate annotated single entities or the references to
other complex entities of the allowed types and accord-
ing to the underlying schema. In SANTO, gold-standard
annotations can be created through a curator account by
merging the annotations of different annotators into a sin-
gle file. The annotations can be exported into formats that
enable interoperability with other data sources and tools,
such as text files in which the span of text of the single
entities and their annotation categories are indicated in
CoNLL format, and as RDF triple files that contain the
relationships.

The annotation process
We first developed the annotation guidelines4 that include
the definition of the general clinical trial terms and the
specific terms for glaucoma and T2DM, and describe the
annotation schema, the use of the annotation tool, and the
way to annotate single and complex entities according to
the schema. The guidelines were written by two authors
and, in case of conflicts, these were resolved by consulting
an expert in the medical field.
Our annotation team consisted of four annotators who

were not experts in medical research, and an expert anno-
tator. The expert annotator was one of the authors, who
was familiar with medical terms and schematic annota-
tion. The four annotators read the guidelines and par-
ticipated in a pre-annotation training. We fine-tuned the
guidelines according to the feedback received from the
team and some of the authors. Although the four annota-
tors were not medical experts, they achieved a good level
of knowledge to perform the annotation work at the end of
the training. In performing the actual annotations, half of
the team annotated the glaucoma abstracts, and the other
half the T2DM abstracts. The annotation was done in two
phases.

Phase 1. Each abstract was first annotated with individ-
ual entities by two annotators, resulting in two annotated
files. Afterward, each pair of annotated files was merged
4The annotation guidelines can be accessed in the repository mentioned in the
“Availability of data and materials” section.
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Fig. 6 Example of single entities annotated with SANTO (abstract PMID 29110647). The red arrows indicate the annotated entities that are included
in the complex entity in Fig. 8

into a new file within SANTO. An expert annotator, the
curator, accepted and merged both sets of annotations
directly in those cases where the two annotators agreed.
In case of disagreement between annotators, the curator
resolved the disagreement. The curator could also remove
incorrect annotations and add missing ones where neces-
sary. The curation (or annotation adjudication) has proved
to improve the annotation quality [18].

Phase 2. Subsequently, the curated texts were distributed
among four annotators to annotate complex entities, that
is, to create templates corresponding to the complex enti-
ties and fill their slots with the appropriate entities or
references to other templates, as appropriate. The anno-
tation of single and complex entities is described in the
following5:

Annotation of single entities
Single entities are spans of text that are annotated as indi-
viduals of a given type or as literal values. The same entity
can be expressed in text in different ways (e.g., uppercase
or lowercase, or as an acronym). For example, “timolol”,
“Timolol” or “Timolol Maleate” are different forms of the
same entity (i.e., the drug timolol), and therefore are all
annotated as Timolol.
A span of text can be annotated with the closest ances-

tor class if the corresponding individual (i.e., instance of a
class) is not in the ontology and thus not in the annotation
catalog. For example, if Timolol was not in the catalog, the
annotator could choose the Drug label to annotate the text
span “Timolol Maleate” because Timolol is an individual
of the Drug class. Figure 6 shows single entities annotated
with SANTO in a clinical trial on T2DM.
Notice that overlapping and embedded annotations are

possible. Examples of these annotation cases are shown in
Fig. 9, where sentence (a) has three overlapping Timepoint
annotations, sentence (b) has two spans of text annotated
as individuals ofDrug that are embedded in an annotation
of the same type (i.e.,Drug). In sentence (c) there are three

5For more details about the annotation process, the reader can consult the
annotation guidelines in the repository mentioned in the “Availability of data
and materials” section.

annotations embedded in an annotation of a different type
(ConclusionComment).

Annotation of complex entities
The slot-filling templates that describe complex entities
are pre-defined in SANTO according to the annotation
schema. On this basis, the annotators instantiate tem-
plates whose slots are filled with single entities or ref-
erences to other complex-entity templates. When a new
template is created, the system gives it a default name.
However, the annotator can change this name to one that
gives a better indication of the content of the template.
The template name becomes the identifier of, or reference
to, the corresponding instance in the knowledge base.
Figure 8 depicts a template (complex entity) of Clini-

calTrial type named “Clinical Trial 76755”, which is the
default name given by the system. The ClinicalTrial tem-
plate has single-entity and complex-entity slots.
Some of the single-entity slots are filled with the indi-

vidual entities shown in Fig. 6. If there were several occur-
rences of the same entity in the text that fit the type of
a single-entity slot, only one of them would be included
in the corresponding slot, regardless of its position in the
text.
The complex-entity slots in the template are for example

hasArm, hasDiffBetweenGroups6, and hasPopulation. We
can see, for example, that the hasPopulation slot contains
a reference to the Population template (instance) “Popula-
tion 76771”. Notice that SANTO allows to fill in slots only
with entities that have types that are valid for the given slot
according to the ontology, and constraints the number of
slots of each type in a template according to the cardinality
restrictions of the corresponding properties defined in the
ontology. For example, 8 shows an example where there is
more than one instance of the Arm template.

Results
Table 2 shows the number of annotations for individual
entities and major complex entities in each disease cor-
pus and the joint corpus Glaucoma-T2DM. It can be seen
that the number of annotations is almost balanced in the

6hasDiffBetweenGroups indicates the difference between the outcomes of the
two interventions being compared.
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Table 2 Number of annotations of single entities and main
complex entities

Corpus Glaucoma T2DM Glaucoma-T2DM

Single entities 10,685 11,704 22,389

Complex entities

Arm 215 208 423

Intervention 241 215 456

Publication 107 104 211

Medication 259 232 491

ClinicalTrial 107 104 211

Endpoint 310 604 914

Outcome 620 1,098 1,718

DiffBetweenGroups 173 303 476

Total 2,032 2,868 4,900

two disease corpora, except for the number of annota-
tions of Endpoint and Result instances, which is higher
in the T2DM corpus than in the glaucoma corpus. This
may be due to the fact that T2DM studies typically include
more endpoints compared to glaucoma studies, yield-
ing a higher number of outcomes reported. It should be
noted that the endpoints and their outcomes can refer to
both primary and secondary outcomes, as well as adverse
events.
To form the final corpus composed of both entity types,

the complex entities (i.e., slot-fill templates) were exported
to n-triple RDF format and the individual entities to
CoNLL-style files. Figure 7 presents an example consist-
ing of different files corresponding to the Annotations in
Figs. 6 and 8, and which are part of the resulting corpus.

Inter-annotation agreement
Inter-annotation agreement (IAA) helps to assess the reli-
ability of the annotations of independent annotators over

a corpus. A high IAA denotes that the annotation task
has been well defined and that the annotations are consis-
tent among annotators. Therefore, the annotations could
be reproduced at other times and in similar contexts (e.g.
other diseases). Thus, we calculated IAA for both single
and complex entities as described in the remainder of this
section.

Inter-annotator agreement on single entities
As our corpus contains fine-grained annotated entities,
the IAA considers cases such as partial and exact annota-
tion matches, and overlapping and embedded annotations
as the ones depicted in Fig. 9.
We rely on Cohen’s Kappa [19, 20] at the token level

and for each annotation type that is accepted as slot-filler.
Cohen’s Kappa is calculated as follows:

Kappa = P(A) − P(E)

1 − P(E)
(1)

Here, P(A) denotes the proportion of times that the two
annotators agree, and P(E) is the proportion of times that
it is expected they agree by chance. Kappa values lower
than 0 indicate no agreement, 0-0.20 a slight, 0.21-0.40
a fair, 0.41-0.60 a moderate, 0.61-0.80 a substantial, and
0.81-1 an almost perfect agreement [21].
Since there are more than 300 categories of annota-

tions, we grouped the annotations into the most gen-
eral categories (i.e., ancestor classes), correspondingly. For
example, DisorderOrSyndrome subsumes Glaucoma and
AngleClosureGlaucoma. In addition to calculate Kappa
for each annotation category, we also calculate the aver-
age Kappa for the whole corpus. As Table 3 shows, the
average Kappa values for glaucoma and T2DM are 0.74
and 0.68, respectively, denoting a substantial agreement.
These results show that, although the clinical trials for

Fig. 7 Example of annotations exported into CoNLL and RDF formats. The CoNLL-style file of entity annotations is at the top and the n-triple file of
slot-template annotations is at the bottom
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Fig. 8 Example of the annotation of the complex entity ClinicalTrial with SANTO (abstract PMID 29110647). The red arrows indicate the single entities
(see Fig. 6) that fill the corresponding slots. The slots hasArm, hasPopulation and hasDiffBetweenGroups contain references to other complex entities

glaucoma and T2DM differ in some of their characteris-
tics, the IAA for both is substantial, suggesting that a good
level of IAA could be reached in various disease contexts.
Further, it can be seen in Table 3 that there is a

high IAA on the annotation of entities that are fre-
quently reported in clinical trials and that are related to
the comparison of treatments, such as EndPointDescrip-
tion (g=0.79, d=0.77), Drug (g=0.83, d=0.91), DoseValue
(g=0.96, d=0.62), ChangeValue (g=0.96, d=0.77), Rela-
tiveChangeValue (g=0.97, d=0.77), and ResultMeasured-
Value (g=0.93, d=0.82) among others. The kappa values
for these annotations are mostly higher for glaucoma (g)
than for T2DM (d).

Causes of disagreement To analyze the causes of dis-
agreement on the annotations, we classify the annotated
entities as numeric or textual. The numerical entities are,
for example, the result values, p-values, etc., and the tex-
tual entities are the descriptions of preconditions, objec-
tive of the study, etc. The main source of disagreement
in the annotation of textual entities was mainly due to
the different limits of the length of the text assigned by
each annotator. On the other hand, the disagreement on
the annotations of numerical entities was lower than for
textual entities. One of the most frequent causes of such
disagreement was the exclusion/inclusion of a minus/plus
sign in front of the annotated number. Another cause of

Fig. 9 Example of annotations cases (excerpts from abstracts PubMed 8123096 and 23950156). a overlapping of annotations of the same type, b
embedded annotation of the same type (i.e., Drug), and c embedded annotations of different types
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Table 3 Kappa values for the annotation of single entities. The
hyphens indicate that no entities were annotated with the
corresponding category

Annotation categories Glaucoma T2DM

AggregationMethod 0.89 0.41

AllocationRatio 0.91 0.00

Author 0.97 0.98

BaseLineValue 0.98 0.86

BioAndMedicalUnit 0.89 0.81

ChangeValue 0.96 0.77

ConclusionComment 0.96 0.92

ConflictInterest 0.00 0.00

Country 0.93 0.87

CTAnalysisApproach 0.26 0.19

CTDesign 0.85 0.86

DeliveryMethod 0.82 0.52

DiffGroupValues 0.71 0.78

DisorderOrSyndrome 0.93 0.98

DoseDescription – 0.41

DoseValue 0.96 0.62

Drug 0.83 0.91

Duration 0.72 0.82

EndPointDescription 0.79 0.77

Ethnicity 0.83 0.86

Frequency 0.92 0.92

Gender – 0.61

Journal 0.97 0.94

MeasurementDevice 0.19 0.00

ObjectiveDescription 0.83 0.88

ObservedResult 0.25 0.06

PMID 0.98 1.00

Precondition 0.47 0.66

PublicationYear 0.95 0.98

RelativeChangeValue 0.97 0.77

RelativeTime 0.32 0.71

ResultMeasuredValue 0.93 0.82

SubGroupDescription 0.23 0.46

TimePoint 0.46 0.71

Title 0.95 0.98

Avg. Kappa 0.74 0.68

disagreement was the annotation of homonymous enti-
ties. For example, when some annotators annotated the
symbol “%” as a unit of concentration and other annota-
tors as a rate value.
Templates with low agreement for both diseases are, for

example, ConflictInterest (g=0, d=0), MeasurementDevice

(g=0.19, d=0), andObservedResult (g=0.25, d=0.06), which
correspond to infrequent textual entities in abstracts.
Future work will reveal if these slots are only frequent in
our data sample or generally infrequent. The importance
of annotating these entities will have to be determined
depending on how crucial they are to support the use
case of automatically aggregating evidence from multiple
clinical trials.

Inter-annotator agreement on the annotation of complex
entities
Measuring agreement on complex entities requires that
the annotators agree on 1.) the number of instances of
a given composed class and 2.) the semantic structure
of these instances according to the underlying ontology.
In terms of slot-filling templates, this means that the
annotators should agree on the number of instances of
complex templates, the relationships between them, and
their slot-filler entities.
Since the calculation of the IAA on complex entities

implies checking several elements, we selected a sample
of 20 abstracts (i.e., around 10% of the total number of
abstracts in the corpus) formed of 10 abstracts on glau-
coma and 10 abstracts on T2DM that were slot-annotated
by two different annotators. In this way, we could analyze
the obtained IAA in more detail. The F1 score was used to
evaluate the IAA on complex entities, considering that a
F1 score of 1 represents a perfect agreement. The F1 score
is the harmonic mean of precision and recall as defined in
Eq. (2), where tp are true positives, fp false positives and
fn false negative predictions.

F1 = 2tp
fp + fn + 2tp

(2)

First, F1 is computed to compare the annotated entities
assigned to single-entity slots of complex entities labeled
by two different annotators.
In case there is more than one instance of the same

complex-entity type in each annotation set, then F1 is
calculated for the different combinations of instances to
estimate the best pairwise alignment, i.e., the pair with
the highest F1. Then, recall and precision are updated
for the slots of the compared instances according to this
alignment. Note that only single-entity slot-fillers are con-
sidered for computing the best alignment.
Figure 10 depicts an example of the statistics (i.e.,

tp/fp/fn) for computing F1 to compare the complex-entity
annotations of two annotators, where one of them is the
gold-standard. If the single entities assigned to the slots of
the pair of complex entities being compared match in type
and value, then this counts as a true positive (tp). Oth-
erwise, as a false positive (fp). When an annotation that
exists in the gold-standard is missing, this counts as a false
negative (fn).
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Fig. 10 Example of the statistics for F1 to determine the IAA on complex entities between two annotators. I: the entity is an Individual. Otherwise,
the entity is a literal value

The F1 scores for slots which have complex entities
as slot-fillers are calculated using the previously com-
puted best alignments. A pair of complex-entity slot-fillers
is considered to be a tp if these slot-fillers have been
aligned. For example, in the case presented in Fig. 10,
Annotator1 identifies two instances of the complex entity
Medication called M1 and M2, and Annotator2 identi-
fies only one Medication M3. Thus, there are two pairs:
(M1, M3) and (M2, M3). F1 is calculated for each pair
and the one with the higher F1 is selected. Assuming that
(M2, M3) is the best alignment, then the F1 score for
(M2, M3) is used to update the number of tp, fp and tn.
Because M1 does not have a corresponding peer, then all
its slot-filler entities are counted as fp.
The position of the annotations in the text is not eval-

uated, since a slot can be filled with any annotation that
fulfills the allowed type for this slot, regardless of its posi-
tion in the text. For example, in a given abstract there

are two entities annotated as Insuline, one at position 5
and one at position 25. One annotator chooses the entity
at position 5 to fill the hasDrug slot in an instance of
Medication and another annotator chooses the entity
at position 25. Both entities are appropriate for this slot.
Since the distribution of the number of slot-fillers

with respect to the slot types is unbalanced, to measure
the overall agreement, we used the micro-averaged F1
score, which allows weighting each prediction equally.
The micro-average score is calculated from the true posi-
tives (tp), false positives (fp), and false negatives (fn) of the
individual slot types. That is, the tp, fp and fn over all the
slot types are summed up and inserted into Eq. (2). The
overall agreement reached is 0.81 as shown in Table 4.
In Table 4, we can also observe that the F1 scores

obtained for most of the single-entity slot-fillers of the
complex entities range between 0.78 and 1.00, denoting a
high agreement. On the other hand, the lower F1 scores
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Table 4 F1 scores for the IAA on complex entities in the
glaucoma-T2DM corpus of 20 abstracts. Slot-fillers that contain
reference to other complex entities are in italics and single entity
slot-fillers in normal font

Publication F1 Population F1

hasAuthor 0.87 hasCountry 0.84

hasTitle 1.00 hasAvgAge 1.00

hasJournal 0.97 hasMinAge 1.00

hasPublicationYear 0.95 hasPrecondition 0.86

hasPMID 0.97 hasMaxAge 1.00

describes 1.00 hasGender 1.00

ClinicalTrial F1 DiffBetweenGroups F1

hasNumberPatientsCT 1.00 hasDiffGroupAbsValue 1.00

analysesHealthCondition 0.78 hasDiffGroupRelValue 0.86

hasConclusionComment 0.96 hasConfIntervalDiff 1.00

hasFinalNumberPatientsCT 1.00 hasPvalueDiff 0.87

hasObjectiveDescription 1.00 hasStandardDevDiff 1.00

hasAnalysisApproach 1.00 hasOutcome1 0.65

hasCTDesign 0.98 hasOutcome2 0.59

hasCTduration 0.94

hasArm 1.00

hasDiffBetweenGroups 0.89

hasPopulation 0.97

Arm F1 Intervention F1

hasNumberPatientsArm 1.00 hasFrequency 0.95

hasAdverseEffect 0.32 hasRelativeFreqTime 0.94

hasIntervention 0.60 hasInterval 0.67

hasOutcome 0.60 hasMedication 0.69

Medication F1 Endpoint F1

hasDrug 0.83 hasEndoPointDescription 0.82

hasDeliveryMethod 0.40 hasBaselineUnit 0.81

hasDoseUnit 0.92

hasDoseValue 0.89

hasDoseDescription 0.86

Outcome F1 Outcome (cont.) F1

hasBaselineValue 0.84 hasChangeValue 1.00

hasConfIntervalChangeValue 1.00 hasNumberAffected 1.00

hasObservedResult 0.81 hasPercentageAffected 0.93

hasPValueChangeValue 1.00 hasPValueResValue 1.00

hasRelativeChangeValue 1.00 hasResultMeasuredValue 1.00

hasSdDevChangeValue 1.00 hasSdErrorChangeValue 1.00

hasSdDevBL 0.93 hasSdDevResValue 1.00

hasSubGroupDescription 1.00 hasTimePoint 0.69

hasEndpoint 0.66

Overall agreement: Micro-averaged F1 = 0.81

range from 0.32 to 0.69 for mostly the complex-entity slot-
fillers, like hasOutcome, hasMedication, hasEndpoint, etc.
This shows that the annotators disagree more on cross-
referencing complex entities, i.e. when the slot-fillers refer
to other complex entities than when the slot-fillers are
single entities.
One of the causes of high IAA may be the fact that the

slot-filling annotation was done on a corpus that contains
curated annotations of single entities. On the other hand,
we observe the following causes of disagreement:
i) The annotators miss to fill some slots,
ii) The annotators conceptualize the complex entities

differently fromwhat is stated in the guidelines. For exam-
ple, this is the case when the annotators consider the
treatments applied before randomization as part of the
compared interventions rather than as part of the pre-
conditions. For instance, in the following excerpt (abstract
PMID 24237386) the drug “metmorfin” is part of the pre-
condition since a criterion of eligibility for the clinical
trial is that the participants have previously received a
metformin treatment. However, the annotator created an
intervention whose drug is metformin.

“Aim: This randomized, double-blind, placebo-controlled
parallel-group study assessed the effects of sodium glu-
cose cotransporter 2 inhibition by dapagliflozin on insulin
sensitivity and secretion in subjects with type 2 diabetes
mellitus (T2DM), who had inadequate glycemic control with
metformin. . . ”

Another example is when two drugs that are part of a
fixed drug combination are mistakenly considered sepa-
rately in two interventions, instead of in a single interven-
tion. For example, in:

“Fixed-combination brimonidine-timolol versus latanoprost
in glaucoma and ocular hypertension: a 12-week, random-
ized, comparison study.”

“brimonidine-timolol” should be annotated as the fixed
drug combination Brimo/TimFC that belongs to a single
intervention. Nevertheless, sometimes the annotators cre-
ated two interventions for the same arm, one intervention
for brimonidine and another for timolol.

Baseline method for single entity recognition
We carried out the recognition of single entities both in
abstracts and full-text articles in order to compare how a
system trained on annotated abstracts performs on these
two types of text.
We used a BERT-based approach. BERT (Bidirectional

Encoder Representations fromTransformers) [22] is a lan-
guage representation model designed to pretrain deep
bidirectional representations from unlabeled text. BERT
has been pretrained on a vast amount of unannotated
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text that is, for example, available on the web. After pre-
training, BERT can be fine-tuned on smaller datasets for
specific NLP tasks or domains.
We used a pretrained BERT model on MED-

LINE/PubMed abstracts7. We fine-tuned this model by
adding two layers that predict the start and end positions
of entities per entity type. If a token at position ps in a
given sentence is predicted to be the start token for an
entity of type t, then the corresponding end token is given
by the nearest token at position pe ≥ ps, which is pre-
dicted as the end position for the entity of type t. If there
is no corresponding end token for a predicted start token,
then the predicted start token is ignored. We trained the
model with the Adam optimizer [23] for 30 epochs. We
only consider entity types that occur at least 20 times in
the respective training set. We report precision, recall,
and F1 on the test sets with exact matching of entities.
We consider a predicted entity in a given sentence to be
correctly classified if there is an entity in the test set of
the same type and the same start and end positions.

Entity recognition on abstracts
Table 5 shows the results of the recognition of single enti-
ties. We can observe that the micro average F1 scores
are similar both for glaucoma and T2DM. The entities
Drug and EndPointDescription obtained very low scores
for glaucoma, while for T2DM these entities reached high
scores. In the case of the Drug entity in glaucoma, the
low scores may be due to the common presence of fixed
combination drugs which are used as treatments for this
disease. For example, in the fixed combination “brimo-
zol/timolol”, brimozol and timolol are each annotated as
single Drug entities, while brimozol/timolol is annotated
as a single Drug entity that spans the two single Drug
entities. It seems that the baseline method is not able to
recognize this type of overlapping entity.
We can also observe that, in general, entities that

are long textual descriptions (e.g., ConclusionComment,
ObservedResults and ObjectiveDescription) tend to get
low scores with exact match. They may get higher scores
with partial matching.

Entity recognition coverage on full-text articles
In order to see the performance of the baseline system
fine-tuned with our abstract corpus on the task of recog-
nizing entities with exact matches in full-text articles, we
created a new test dataset. This dataset is composed of full
articles that are freely available and correspond to some
of the abstracts included in the test datasets for the pre-
vious experiment. The new test dataset is composed of 20
full-text articles, of which 13 articles are on T2DM and 7
on glaucoma. The abstracts, figures, tables, and references
were removed from these files.
7https://tfhub.dev/google/experts/bert/pubmed/2

Table 5 Results of the single entity prediction with EXACT match
on abstracts. The hyphens indicate that the entities do not
appear in the respective datasets

Glaucoma T2DM

Entity Precision Recall F1 Precision Recall F1

Author 0.99 0.99 0.99 0.87 0.99 0.93

BaselineUnit 0.68 0.56 0.61 0.73 0.79 0.76

BaselineValue 0.91 0.67 0.77 0.88 0.75 0.81

CTDesign 0.79 0.89 0.84 0.87 0.91 0.89

CTduration 0.94 0.94 0.94 0.89 0.89 0.89

ChangeValue 0.97 0.85 0.90 0.73 0.90 0.80

ConclusionComment 0.79 0.79 0.79 0.00 0.00 0.00

ConfIntervalDiff - - - 0.00 0.00 0.00

Country 0.82 0.95 0.88 0.91 0.56 0.69

DiffGroupAbsValue 0.73 0.89 0.80 0.86 0.60 0.71

DisorderOrSyndrome 0.97 0.92 0.94 0.64 0.47 0.55

DoseUnit 0.56 0.82 0.67 0.80 0.80 0.80

DoseValue 0.67 0.74 0.70 0.89 0.84 0.86

Drug 0.29 0.13 0.18 0.85 0.79 0.81

EndoPointDescription 0.17 0.11 0.13 0.68 0.77 0.72

Frequency 0.89 0.69 0.77 0.76 0.62 0.68

Journal 0.52 0.52 0.52 1.00 1.00 1.00

NumberAffected 0.71 1.00 0.83 1.00 0.87 0.93

NumberPatientsArm 0.81 0.81 0.81 1.00 0.87 0.93

NumberPatientsCT 0.93 0.93 0.93 0.93 1.00 0.97

ObjectiveDescription 0.58 0.48 0.52 0.38 0.28 0.32

ObservedResult 0.00 0.00 0.00 0.00 0.00 0.00

PMID 1.00 1.00 1.00 1.00 1.00 1.00

PValueChangeValue 0.55 0.75 0.63 0.64 0.64 0.64

PercentageAffected 0.86 1.00 0.93 0.98 0.94 0.96

Precondition 0.71 0.22 0.33 0.40 0.16 0.23

PublicationYear 1.00 1.00 1.00 1.00 1.00 1.00

PvalueDiff 0.46 0.61 0.52 0.85 0.92 0.88

RelativeChangeValue 1.00 0.67 0.80 - - -

RelativeFreqTime 0.44 0.67 0.53 - - -

ResultMeasuredValue 0.84 0.93 0.88 0.83 1.00 0.90

SdDevBL 1.00 0.80 0.89 0.71 0.45 0.56

SdDevChangeValue 1.00 0.67 0.80 0.55 0.86 0.67

SdDevResValue 0.83 1.00 0.91 0.37 0.86 0.52

SdErrorChangeValue 1.00 1.00 1.00 - - -

TimePoint 0.70 0.67 0.68 0.74 0.67 0.70

Title 0.93 0.82 0.87 0.91 0.77 0.83

Micro average: 0.80 0.73 0.76 0.81 0.73 0.77
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We used the fine-tuned BERT model on the full-text
article dataset. We calculated the exact match by check-
ing how many of the predicted entities were also tagged
in the corresponding curated annotated abstracts (here
called ground truth set). The results of this coverage are
shown in Table 6.
The low scores obtained for the meta-information (i.e.,

Publication: Author, Title, Journal, PublicationYear, PMID,
and Country) of the clinical trials for both diseases were
mainly due to the different formats of the free full-
text articles. For example, in the abstracts the format
for author name is [surname(s) name initial(s)], while in
the full-text is: [name(s) surname]. For instance, in the
abstract PMID 27740719, the name of the first author is
written as “Shankar RR”, while in the corresponding full
text (PMCID: PMC5415484) is “R Ravi Shankar”. Because
the system compares exact matches it considers these
author names as mismatches.
Possible causes that the system did not find relevant

information, such as baseline data, results values, and
the difference between groups are: 1.) these data were
included in figures or tables, which were eliminated; 2.)
the baseline system could not adequately predict them as
it was pretrained and fine-tuned with abstracts that have a
different structure from that of full texts; 3.) our compar-
ison was quite strict when comparing to exact matches.
With partial matches, higher scores may be obtained.
We also tried a simple partial match, where a predicted

entity was considered correct if there was an entity in
the ground truth set with at least one overlapping token.
Then, this entity in the ground truth set could not be used
for any other subsequent alignment. The results in Table 7
with partial match show that the average precision scores
for glaucoma and T2DM are similar to the ones reached
with exact match in Table 6, while the average recall for
both diseases increased.
Notice that a more complex partial matching method

that considers overlapping of entities of the same type and
embedded entities of the same and different type would
give more precise results that the one used.

Discussion
Our final corpus of 211 clinical trial abstracts of glau-
coma and T2DM clinical trials obtained a substantial
inter-annotator agreement at the entity and schema levels.
Due to the high level of detail of the annotations, the

calculation of the inter-annotation agreement on single
entities considers perfect and partial matches, as well as
embedded and overlapping annotations. Furthermore, it
considers as an agreement when the same entity is anno-
tated either with a specific or a general category. The
high agreement reached in most of the annotations of
single and complex entities may also be due to the provi-
sion of clear annotation guidelines and effective training

Table 6 Results of the entity prediction with EXACT match on
full text articles. The hyphens indicate that the entities do not
appear in the respective datasets

Glaucoma T2DM

Entity Precision Recall F1 Precision Recall F1

Author 0.00 0.00 0.00 0.27 0.06 0.10

BaselineUnit 0.75 0.60 0.67 0.42 0.79 0.55

BaselineValue 0.11 0.25 0.15 0.24 0.45 0.32

CTDesign 0.59 0.73 0.65 0.50 0.87 0.63

CTduration 0.19 0.60 0.29 0.31 0.69 0.43

ChangeValue 0.02 0.20 0.04 0.16 0.36 0.22

ConclusionComment 0.05 0.08 0.06 0.00 0.00 0.00

ConfIntervalDiff - - - 0.00 0.00 0.00

Country 0.14 0.33 0.20 0.00 0.00 0.00

DiffGroupAbsValue 0.00 0.00 0.00 0.03 0.06 0.04

DisorderOrSyndrome 0.53 0.83 0.65 0.75 0.75 0.75

DoseUnit 0.20 0.50 0.29 0.80 0.92 0.86

DoseValue 0.29 1.00 0.44 0.50 0.77 0.61

Drug 0.14 0.19 0.16 0.73 0.92 0.81

EndoPointDescription 0.14 0.50 0.22 0.20 0.54 0.29

Frequency 0.60 0.67 0.63 0.40 0.53 0.46

Journal 0.00 0.00 0.00 1.00 0.46 0.63

NumberAffected 0.00 0.00 0.00 0.02 0.50 0.04

NumberPatientsArm 0.00 0.00 0.00 0.34 0.65 0.45

NumberPatientsCT 0.25 0.75 0.37 0.21 0.50 0.30

ObjectiveDescription 0.00 0.00 0.00 0.00 0.00 0.00

ObservedResult 0.00 0.00 0.00 0.00 0.00 0.00

PMID 1.00 0.29 0.44 1.00 0.31 0.47

PValueChangeValue 0.00 0.00 0.00 0.00 0.00 0.00

PercentageAffected 0.00 0.00 0.00 0.14 0.77 0.24

Precondition 0.00 0.00 0.00 0.11 0.07 0.08

PublicationYear 0.60 0.43 0.50 0.90 0.69 0.78

PvalueDiff 0.21 0.33 0.26 0.15 0.37 0.21

RelativeChangeValue 0.04 1.00 0.08 - - -

RelativeFreqTime 0.20 0.50 0.29 - - -

ResultMeasuredValue 0.47 0.50 0.48 0.07 0.80 0.13

SdDevBL 0.11 0.25 0.15 0.44 0.36 0.40

SdDevChangeValue 0.00 0.00 0.00 0.00 0.00 0.00

SdDevResValue 0.46 0.75 0.57 0.05 0.71 0.09

SdErrorChangeValue 0.00 0.00 0.00 - - -

TimePoint 0.20 0.50 0.29 0.06 0.33 0.10

Title 0.00 0.00 0.00 0.00 0.00 0.00

Micro average: 0.18 0.31 0.23 0.20 0.44 0.28
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Table 7 Results of the entity prediction on full text articles with
PARTIAL match. The hyphens indicate that the entities do not
appear in the respective datasets

Glaucoma T2DM

Entity Precision Recall F1 Precision Recall F1

Author 0.78 0.12 0.20 0.64 0.18 0.29

BaselineUnit 0.31 0.90 0.46 0.24 0.79 0.37

BaselineValue 0.10 0.25 0.14 0.31 0.60 0.41

CTDesign 0.42 0.77 0.55 0.40 0.97 0.56

CTduration 0.17 0.80 0.29 0.37 0.92 0.53

ChangeValue 0.08 0.80 0.15 0.31 0.75 0.44

ConclusionComment 0.52 0.92 0.67 0.00 0.00 0.00

ConfIntervalDiff - - - 0.00 0.00 0.00

Country 0.10 0.33 0.15 0.00 0.00 0.00

DiffGroupAbsValue 0.27 0.80 0.40 0.37 0.82 0.51

DisorderOrSyndrome 0.34 0.92 0.50 0.67 0.83 0.74

DoseUnit 0.14 1.00 0.25 0.46 1.00 0.63

DoseValue 0.15 1.00 0.27 0.44 0.92 0.60

Drug 0.33 0.56 0.42 0.51 0.96 0.67

EndoPointDescription 0.10 0.50 0.16 0.24 0.93 0.38

Frequency 0.25 0.67 0.36 0.29 0.73 0.42

Journal 1.00 0.29 0.44 0.86 0.46 0.60

NumberAffected 0.00 0.00 0.00 0.02 0.50 0.04

NumberPatientsArm 0.00 0.00 0.00 0.30 0.65 0.41

NumberPatientsCT 0.23 0.75 0.35 0.20 0.50 0.29

ObjectiveDescription 1.00 0.20 0.33 1.00 0.08 0.15

ObservedResult 0.00 0.00 0.00 0.50 0.33 0.40

PMID 1.00 0.29 0.44 1.00 0.31 0.47

PValueChangeValue 0.22 1.00 0.36 0.00 0.00 0.00

PercentageAffected 0.00 0.00 0.00 0.14 0.90 0.25

Precondition 1.00 0.17 0.29 0.56 0.33 0.42

PublicationYear 0.60 0.43 0.50 0.75 0.69 0.72

PvalueDiff 0.37 0.67 0.48 0.23 0.97 0.38

RelativeChangeValue 0.04 1.00 0.07 - - -

RelativeFreqTime 0.13 1.00 0.24 - - -

ResultMeasuredValue 0.59 0.62 0.61 0.08 0.93 0.14

SdDevBL 0.11 0.25 0.15 0.56 0.45 0.50

SdDevChangeValue 0.00 0.00 0.00 0.00 0.00 0.00

SdDevResValue 0.46 0.75 0.57 0.04 0.71 0.08

SdErrorChangeValue 0.00 0.00 0.00 - - -

TimePoint 0.17 0.75 0.28 0.05 0.83 0.10

Title 0.00 0.00 0.00 0.00 0.00 0.00

Micro average: 0.22 0.50 0.30 0.22 0.63 0.33

of the annotators. However, barriers for the annotation
task are the inherent complexity of the medical domain
and the different ways in which the authors of the stud-
ies describe their methodology and results in the limited
space of the published abstracts. For example, sometimes
the authors only report the difference between interven-
tion groups, the last time point measurement, or the
amount of change in the measurements from the base-
line, and omit other relevant information. Compared to
the clinical trial information extracted by Trenta et al.
[11] which aims to complete evidence tables, our corpus
would support the development of information extraction
systems that can extract more detailed information akin
to more complete trial result reports commonly included
in clinical trial articles (such as baseline characteristics,
results, and adverse effects). For example, in Trenta et al.
[11] the information extracted does not include the dose
of the drug administered, the baseline measurements, the
average age of the patients, the number of participants in
each arm, the adverse events, etc. that are part of these
tables. Furthermore, with simple SPARQL queries on the
RDF files generated from the curated (i.e. gold-standard)
annotated corpus, it would be possible to generate such
evidence tables on results and adverse effects.
To present the use of our corpus, we applied a

BERT-based system to recognize single entities both
in abstracts and in full-text articles. For abstracts, the
method achieved micro-F1 scores of 0.76 for glaucoma
and 0.77 for T2DM with exact matching, which is a good
performance as a baseline.
However, for full texts the baseline method achieved

very low scores with exact matching for the prediction of
most entities. We have pointed out that the main reason
for this is due to the different text format in which the
baseline method was pretrained and fine-tuned (i.e., using
PubMed abstracts).
Furthermore, we found that it is not always convenient

to annotate complete texts, since they commonly have a
more complex structure and make annotation a long and
painful process. Also, it is possible that important infor-
mation is still missing in the full texts, since this may be
contained in tables/figures or in other documents, such
as supplementary material, protocol documents or regis-
tration records. On the other hand, since the annotated
abstracts follow the CONSORT structure, they summa-
rize the corresponding articles quite well, contain the
relevant information for the aggregation of clinical trials,
and are easier to annotate in both entity and schematic
levels.
On the other hand, the prediction of complex-entity

slot-fillers is still a challenge for future work. Nevertheless,
the current baseline methods results are encouraging and
demonstrate that our fined-grained corpus may be use-
ful for training systems that extract schematic information
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from clinical trial abstracts that are beyond coarse-grained
single PICO entities.

Conclusions
In this work, we presented a corpus composed of 104
T2DM abstracts and 107 glaucoma abstracts. The corpus
contains annotations for both single and complex entities,
as well as their relationships. The corpus is delivered in
RDF format for the complex entities (i.e., schematic anno-
tation) and in CoNLL-style for single entities. We have
obtained significant inter-annotation agreement for both
kinds of annotations. We carried out an analytical process
and discussions with physicians and annotators in order
to get a consensus about the most suitable way to annotate
each abstract. In these discussions, we developed an anno-
tation schema that attempts to keep the original C-TrO
structure and at the same time captures the different ways
in which authors of published clinical studies may express
their methodology and results. To reach a clear consen-
sus has not been easy, considering that the annotated data
is meant to be used for training of an information extrac-
tion system that identifies simple and complex entities and
their relationships in order to populate a knowledge base.
Despite the relatively small size of the corpus, it has been

shown to be useful in fine-tuning a baseline NER system
and, due to its detailed level of annotations, the system
achieved encouraging accuracy in abstracts.Working with
abstracts instead of full texts has several advantages. First,
the task of annotating abstracts involves less effort com-
pared to annotating full texts. Second, most existing deep
learning methods including transformers are pre-trained
on the basis of abstracts and have a better performance on
these.
In future work, the corpus will be used in information

extraction systems that in addition to improving the per-
formance of the presented baseline method, recognize the
slot-fillers of complex entities, and the cross-references to
other complex entities.
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